Fully differential amplifiers applications:
Line termination, driving high-speed ADCs,
and differential transmission lines

By Jim Karki
Systems Specialist, High-Performance Linear

Introduction
The August 2000 issue of Analog Applications Journal introduced the fully differential amplifiers from Texas Instruments and illustrated their basic operation. In the November 2000 issue we delved into the topic more deeply by analyzing gain and noise. In this issue we investigate some typical applications like transmission lines and driving ADC inputs.

To simplify calculations and formulas, we will assume that the amplifier is being used at frequencies where the open-loop gain is very large (AF >> 1) and will not include its effects in the analysis.

The circuit analysis assumes that symmetrical feedback is being used (β1 = β2). Before going into the application circuits, we will detour briefly into how termination affects the feedback factor and how to account for it.

Terminating the input source
Double termination is typically used in high-speed systems to reduce transmission-line reflections. With double termination, the transmission line is terminated with the same impedance as the source. Common values are 50 W, 75 W, 100 W, and 600 W. When the source is differential, the termination is placed across the line. When the source is single-ended, the termination is placed from the line to ground.

Figure 1 shows an example of terminating a differential signal source. The situation depicted is balanced so that half of VS and half of RS is attributed to each input, with VIC being the center point. RS is the source impedance and Rt is the termination resistor. The circuit is balanced, but there are two issues to resolve: (1) proper termination and (2) gain setting.

As long as AF >> 1 and the amplifier is in linear operation, the action of the amplifier keeps VN ≈ VP. Thus, to first-order approximation, a virtual short is seen between the two nodes as shown in Figure 2. The termination impedance is the parallel combination: Rt || (R1+R3). The value of Rt for proper termination is calculated as shown in Figure 2.

Once Rt is found, the required gain is found by generating a Thevenin equivalent circuit. The circuit is broken between Rs and the amplifier input resistors R1 and R3. VIC does not concern us at this point, so we will leave it out. Then

\[V_{TH} = V_S \times \frac{R_t}{R_t + R_S}, \]

and \[R_{TH} = R_S \parallel R_t \] (half is attributed to each side). The resulting Thevenin equivalent is shown in Figure 3. The proper gain is calculated by

\[\frac{V_{OUT}}{V_{TH}} = \frac{R_F}{R_G + \frac{R_S \parallel R_t}{2}}, \]

where \[V_{OUT} = (V_{OUT+}) - (V_{OUT-}). \]
Substituting for \(V_{TH} \), this becomes

\[
\frac{V_{OUT}}{V_S} = \frac{R_F}{R_G + \frac{R_S \cdot R_t}{2}} \times \frac{R_t}{R_S + R_t},
\]

where \(R_F \) is the feedback resistor (\(R2 \) or \(R4 \)), and \(R_G \) is the input resistor (\(R1 \) or \(R3 \)). Remember: for symmetry, keep the gain equal on the two sides with \(R2 = R4 \) and \(R1 = R3 \).

As an example, suppose you are terminating a 50-Ω differential source that is balanced, and you want an overall gain of 1 from the source to the differential output of the amplifier. Start the design by first choosing the values for \(R1 \) and \(R3 \), then calculate \(R_t \) and the feedback resistors.

With the voltage divider formed by the termination, it is reasonable to assume that a gain of about 2 will be required in the amplifier. Also, feedback resistor values of approximately 500 Ω are reasonable for a high-speed amplifier. Using these starting assumptions, choose \(R1 = R3 = 249 \) Ω. Next calculate \(R_t \) from the formula:

\[
R_t = \frac{1}{\frac{1}{R_S} - \frac{1}{R1 + R3}} = \frac{1}{\frac{1}{50} - \frac{1}{(249 + 249)}} = 55.6 \text{ Ω}
\]

(the closest standard 1% value is 56.2 Ω). Then set the gain by calculating the value of the feedback resistors:

\[
R_F = V_{OUT} \times \left(\frac{R_G + \frac{R_S \cdot R_t}{2}}{R_S + R_t} \right)
\]

\[
= 1 \times \left(\frac{249 + \frac{50 \cdot 56.2}{2}}{249 + 56.2} \right) \times \frac{50 + 56.2}{56.2} = 495.5 \text{ Ω}
\]

(the closest standard 1% value is 499 Ω).

The solution is shown in Figure 4 with standard 1% resistor values.

Figure 5 shows an example of terminating a single-ended signal source. \(R_S \) is the source impedance, and \(R_t \) is the termination resistor. The circuit is not balanced, so there are three issues to resolve: (1) proper termination, (2) gain setting, and (3) balance.

To determine the termination impedance seen from the line looking into the amplifier’s input at \(V_{IN} \), remove \(V_S \) and \(R_S \) and short all other sources. As long as \(A_F >> 1 \) and the amplifier is in linear operation, the action of the amplifier keeps \(V_N = V_P \). \(V_N \) will see the voltage at \(V_{OUT}+ \) divided by the resistor ratio

\[
\frac{R1}{R1 + R2}
\]

Assuming that the amplifier is balanced,

\[
V_{OUT}+ = K \times \frac{V_{IN}}{2},
\]

where \(K \) is the closed-loop gain of the amplifier (\(V_{OCM} = 0 \)). The termination impedance is the parallel combination: \(R_t \) in parallel with

\[
R_t = \frac{1}{\frac{1}{R_S} - \frac{K}{2 \times (1 + K)}}
\]

The value of \(R_t \) for proper termination is then calculated as shown in Figure 6.

Once \(R_t \) is found, the required gain is found by generating a Thevenin equivalent circuit. The circuit is broken between \(R_t \) and the amplifier’s input resistor \(R3 \).

\[
V_{TH} = V_S \times \frac{R_t}{R_t + R_S},
\]

and \(R_{TH} = R_S \| R_t \).

Continued on next page
Continued from previous page

The resulting Thevenin equivalent is shown in Figure 7. The gain is set by

\[\frac{V_{\text{OUT}} - R_F}{V_{\text{TH}}} = \frac{R_F}{R_G} \]

where \(R_F = R_2 = R_4, \) \(R_G = R_1 = R_3 + R_S \parallel R_t, \) and \(V_{\text{OUT}} = (V_{\text{OUT}+}) - (V_{\text{OUT}^-}). \) Substituting for \(V_{\text{TH}}, \) this becomes

\[\frac{V_{\text{OUT}}}{V_S} = \frac{R_F}{R_G} \times \frac{R_t}{R_S + R_t}. \]

Remember, for symmetry: \(R_2 = R_4 \) and \(R_1 = R_3 + (R_S \parallel R_t). \)

As an example, suppose you are terminating a 50-\(\Omega \) single-ended source and want an overall gain of 1 from the source to the differential output of the amplifier. Start the design by first choosing the value for \(R_3, \) then calculate \(R_t \) and the feedback resistors. This will be an iterative process, starting with some initial assumptions that are then refined.

Start with the assumptions that \(R_t = 50 \, \Omega \) and that a gain of 2 will be required in the amplifier. Also, feedback resistor values of approximately 500 \(\Omega \) are reasonable for a high-speed amplifier. Using these starting assumptions, choose \(R_1 = 249 \, \Omega \) and \(R_3 = R_1 - R_S \parallel R_t = 249 \, \Omega - 25 \, \Omega = 224 \, \Omega. \) Next calculate \(R_t \) from the formula:

\[R_t = \frac{1}{\frac{1}{R_S} - \frac{1}{2(1+K)} - \frac{1}{50} - \frac{1}{224}}, \]

Then calculate the value of the feedback resistors:

\[R_2 = \frac{V_{\text{OUT}}}{V_S} \times R_1 \times \frac{R_S + R_t}{R_t} = 1 \times 249 \times \frac{50 + 58.7}{58.7} = 460.9 \, \Omega, \]

and \(R_4 = \frac{V_{\text{OUT}}}{V_S} \times (R_3 + R_S \parallel R_t) \times \frac{R_S + R_t}{R_t} = 1 \times (224 + 50 \parallel 58.7) \times \frac{50 + 58.7}{58.7} = 464.7 \, \Omega. \)

It can be seen that the process is iterative because the gain is not 2, but rather

\[\frac{460.9}{249} = 1.85; \]

and \(R_t \) is calculated to be 58.7 \(\Omega, \) not 50 \(\Omega. \) Iterating through the calculations two more times results in:

\(R_3 = 221.9 \, \Omega \) (the closest standard 1\% value is 221 \(\Omega), \)

\(R_t = 59.0 \) (which is a standard 1\% value), and

\(R_2 = R_4 = 460.9 \) (the closest standard 1\% value is 464 \(\Omega). \) The solution is shown in Figure 8 with standard 1\% resistor values.

Use of a spreadsheet makes the iterative process very simple. Also, component values can be easily adjusted to find a better fit to the standard available values.

From the foregoing it is seen that, although the idea of terminating the load may seem trivial, a bit of work is required to get it right.

Active anti-alias filtering

A major application for fully differential amplifiers is low-pass anti-alias filters for ADCs with differential inputs. Creating an active first-order low-pass filter is easily accomplished by adding capacitors in the feedback as shown in Figure 9. With balanced feedback, the transfer function is

\[\frac{V_{\text{OUT}}}{V_{\text{IN}}} = \frac{R_F}{R_G} \times \frac{1}{1 + 2\pi f(R_F C_F)}, \]

where \(V_{\text{OUT}} = (V_{\text{OUT}+}) - (V_{\text{OUT}^-}) \) and \(V_{\text{IN}} = (V_{\text{IN}+}) - (V_{\text{IN}^-}). \) The pole created in the transfer function is a real pole on the negative real axis in the s-plane.

To create a two-pole low-pass filter, a passive real pole can be created by placing \(R_0 \) and \(C_0 \) in the output, as shown in Figure 10. With balanced feedback, the transfer function is

\[\frac{V_{\text{OUT}}}{V_{\text{IN}}} = \frac{R_F}{R_G} \times \frac{1}{1 + 2\pi f(R_F C_F)} \times \frac{1}{1 + 2\pi f \times 2 \times R_0 C_0}, \]

where \(V_{\text{OUT}} = (V_{\text{OUT}+}) - (V_{\text{OUT}^-}) \) and \(V_{\text{IN}} = (V_{\text{IN}+}) - (V_{\text{IN}^-}). \)

The second pole created in the transfer function is also a real pole on the negative real axis in the s-plane. The capacitor \(C_0 \) can be placed differentially across the outputs.
as shown in solid lines; or two capacitors (of twice the value) can be placed between each output and ground as shown in dashed lines. Typically, R_O will be a low value; and, at frequencies above the pole frequency, the series combination with C_O will load the amplifier. The extra loading will cause extra distortion in the amplifier’s output. To avoid this, you might stagger the poles so that the R_OC_O pole is placed at a higher frequency than the $RF\cdot CF$ pole.

The classic filter types like Butterworth, Bessel, Chebyshev, etc. (second-order and greater), cannot be realized by real poles—they require complex poles. The multiple feedback (MBF) topology is used to create a complex pole pair and is easily adapted to fully differential amplifiers as shown in Figure 11. A third-order filter is formed by adding R_4s and C_3 at the output.

Capacitors C_2 and C_3 can be placed differentially across the inputs and outputs, as shown in solid lines. Alternatively, for better common-mode noise rejection, two capacitors of twice the value can be placed between each input or output and ground, as shown in dashed lines.

The transfer function for this filter circuit is

$$V_{OUT} = \left[\frac{K}{\left(1 + j2\pi fC + \frac{1}{2} \frac{f}{FSF}\right)} \right] \times 1$$

where $V_{OUT} = (V_{OUT^+}) - (V_{OUT^-})$ and $V_{IN} = (V_{IN^+}) - (V_{IN^-})$,

$$K = \frac{R_2}{R_1}, \quad FSF \cdot f_C = \frac{1}{2\pi \sqrt{2 \times R_2R_3C_1C_2}}$$

and $Q = \frac{\sqrt{2 \times R_2R_3C_1C_2}}{R_3C_1 + R_2C_1 + KR_3C_1}$

K sets the pass-band gain, f_C is the cut-off frequency of the filter, FSF is a frequency scaling factor, and Q is the quality factor.

$$FSF = \sqrt{Re^2 + Im^2}, \quad and \quad Q = \frac{\sqrt{Re^2 + Im^2}}{2Re}$$

where Re is the real part of the complex pole pair and Im is the imaginary part.

Setting $R_2 = R$, $R_3 = mR$, $C_1 = C$, and $C_2 = nC$ results in

$$FSF \cdot f_C = \frac{1}{2\pi RC\sqrt{2 \times mn}} \quad and \quad Q = \frac{\sqrt{2 \times mn}}{1 + m(1 - K)}$$

Start by determining the ratios, m and n, required for the gain and Q of the filter type being designed, then select C and calculate R for the desired f_C.

Continued on next page
R4 and C3 are chosen to set the real pole in a third-order filter. Care should be exercised with setting this pole. Typically, R4 will be a low value; and, at frequencies above the pole frequency, the series combination with C3 will load the amplifier. The extra loading will cause extra distortion in the amplifier’s output. To avoid this, place the real pole at a higher frequency than the cut-off frequency of the complex pole pair.

Figure 12 shows the gain and phase response of a second-order Butterworth low-pass filter, with corner frequency set at 1 MHz and the real pole set by R4 and C3 at 15.9 MHz. The components used are: R1 = 787 Ω, R2 = 787 Ω, R3 = 732 Ω, R4 = 50 Ω, C1 = 100 pF, C2 = 220 pF, C3 = 100 pF, and the THS4141 fully differential amplifier. At higher frequencies, parasitic elements allow the signal to feed through.

VOCM

The proper VOCM is provided as an output by many ADCs with differential inputs. Typically, all that needs to be done is to provide bypass capacitors; 0.1 µF and 0.01 µF are useful choices. If VOCM is not provided, it can be created by forming a summing node with the ADC’s plus and minus reference voltages to drive VOCM, as shown in Figure 13. The voltage at the summing node is the midpoint value between +VREF and –VREF. Depending on the loading of the VOCM input, the summing node voltage may need to be buffered.

Power-supply bypass

Each power rail should have 6.8-µF to 10-µF tantalum capacitors located within a few inches of the amplifier to provide low-frequency power-supply bypassing. A 0.01-µF to 0.1-µF ceramic capacitor should be placed within 0.1 inch of each power pin on the amplifier to provide high-frequency power-supply bypassing.

Layout considerations

As with all high-speed amplifiers, you should minimize parasitic capacitance at the amplifier’s input by removing the ground plane near the pins and near any circuit traces. Also, make trace routing as direct as possible and use surface-mount components.

Using positive feedback to provide active termination

Driving transmission lines differentially is a typical use for fully differential amplifiers. Using positive feedback with amplifiers can provide active termination, as shown in Figure 14. Because of the positive feedback, the output line impedance appears larger than the value of output resistor R0. Still, the voltage dropped across the resistor depends on its actual value, resulting in increased efficiency.

It is important to use symmetrical feedback with this application.

With double termination, the output impedance of the amplifier, ZO, will equal the characteristic impedance of the transmission line; and the far end of the line will be terminated with the same value resistor, i.e., R1 = ZO. For proper balance, half of ZO is placed in each half of the differential output, so that ZO = 2 x ZO±.

To calculate the output impedance, ground the inputs and insert either a voltage or current source between VOUT+ and VOUT–.

Due to symmetry, ZO+ = ZO–, VOUT+ = -(VOUT–), and VO+ = -(VO–). Calculating the impedance of one side provides the solution:

$$Z_O^+ = \left(\frac{\text{OUT}^+}{\text{I}_{\text{OUT}^+}}\right)\parallel R_p, \quad \text{I}_{\text{OUT}^+} = \frac{(\text{OUT}^+)-(V_O^+)}{R_O},$$

and $V_O^+ = (V_{OUT^-}) \times \left(-\frac{R_F}{R_P}\right)$.

The amplifier’s output impedance on each side of the line will be R_0 divided by 1 minus the gain from the opposite line:

$$Z_O^\pm = \left(\frac{R_O}{1 - \frac{R_F}{R_P}}\right)\parallel R_p. \quad (1)$$

The positive feedback also affects the forward gain. Accounting for this effect and the voltage divider between
For standard termination,
\[RF = 1 \, k\Omega, \, RP = \text{open}, \, RG = 499 \, \Omega, \]
\[Rt = 100 \, \Omega, \quad \text{and} \quad RO = 50 \, \Omega. \]

With standard termination, 20 mW of power is dissipated in the output resistors, as opposed to 6.25 mW with active termination, which wastes 69% less power.

Another feature about active termination that is very attractive, especially in low-voltage applications, is the effective increase in output-voltage swing for a given supply voltage.

Conclusion

In high-speed systems, proper line termination requires considering the termination resistors and adjusting the gain-setting resistors to maintain symmetrical feedback.

Integrated, fully differential amplifiers are well suited for driving differential ADC inputs. They provide an easy means for anti-alias filtering and for setting the common-mode voltage.

Integrated, fully differential amplifiers are also well suited for driving differential transmission lines, and active termination provides for increased efficiency.

Related Web sites

www-s.ti.com/sc/techlit/slyt018

amplifier.ti.com

R0 and R1 \(\parallel \) 2RP, the gain from \(V_{IN} = (V_{IN+}) - (V_{IN-}) \) to \(V_{OUT} = (V_{OUT+}) - (V_{OUT-}) \) is

\[
A = \frac{V_{OUT}}{V_{IN}} = \frac{R_F}{R_G} \times \frac{1}{\frac{2R_O + R_t \parallel 2R_P}{R_t \parallel 2R_P} - \frac{R_F}{R_P}}. \tag{2}
\]

Design is easily accomplished if you first choose the value of \(R_F \) and \(R_O \). Then calculate the required value of \(R_P \) to give the desired \(Z_O \). Then calculate \(R_G \) for the required gain.

For example: It is given that you want a gain of 1, and you want to terminate a 100-\(\Omega \) line properly with \(R_F = 1 \, k\Omega \) and \(R_O = 10 \, \Omega \). The proper value for \(Z_O \) and \(R_t \) is 100 \(\Omega \) \((Z_O \pm = 50 \, \Omega)\). Rearranging Equation 1 yields

\[
R_P = \frac{R_F - R_O}{1 - \frac{R_O}{Z_O \pm}} = \frac{990 \, \Omega}{1 - \frac{10 \, \Omega}{50 \, \Omega}} = 1.24 \, k\Omega.
\]

Then, rearranging Equation 2 gives us

\[
R_G = \frac{A \times \frac{1}{\frac{2R_O + R_t \parallel 2R_P}{R_t \parallel 2R_P} - \frac{R_F}{R_P}}} = \frac{1 \, \Omega}{20 \, \Omega + 100 \Omega \parallel 2.48 \, k\Omega} = \frac{1 \, \Omega}{100 \Omega \parallel 2.48 \, k\Omega} = 2.49 \, k\Omega.
\]

The circuit is built and tested with the nearest standard values to those previously computed: \(R_F = 1 \, k\Omega, \, R_P = 1.24 \, k\Omega, \, R_G = 2.49 \, k\Omega, \, R_t = 100 \, \Omega, \quad \text{and} \quad RO = 10 \, \Omega \). Compare the output voltage waveforms \((V_{OUT} = 2V_{PP})\) with active termination and standard termination shown in Figure 15

[\(V_O = (V_{O+}) - (V_{O-}), \quad \text{and} \quad V_{OUT} = (V_{OUT+}) - (V_{OUT-}) \).]
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
- Amplifiers
- Data Converters
- DSP
- Interface
- Logic
- Power Mgmt
- Microcontrollers

Applications
- Audio
- Automotive
- Broadband
- Digital control
- Military
- Optical Networking
- Security
- Telephony
- Video & Imaging
- Wireless

Internet
- TI Semiconductor Product Information Center Home Page
- TI Semiconductor KnowledgeBase Home Page
- Product Information Centers

Americas
- Internet/Email: support.ti.com/sc/pic/americas.htm
- Phone: +1(972) 644-5580 Fax: +1(972) 927-6377

Europe, Middle East, and Africa
- Internet/Email: support.ti.com/sc/pic/europe.htm
- Phone: +49 (0) 8161 80 33 11 Fax: +49 (0) 8161 80 2045

Japan
- Internet/Email: support.ti.com/sc/pic/japan.htm
- Phone: +81-3-3344-5317 Fax: +886-2-2378-6800

Asia
- Internet: www.ti.com

Safe Harbor Statement: This publication may contain forward-looking statements that involve a number of risks and uncertainties. These “forward-looking statements” are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TI or its management “believes,” “expects,” “anticipates,” “foresees,” “forecasts,” “estimates” or other words or phrases of similar import. Similarly, such statements herein that describe the company’s products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements.

All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI’s most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.

Trademarks: All trademarks are the property of their respective owners.

Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265

© 2005 Texas Instruments Incorporated